|本期目录/Table of Contents|

[1]汪湄,党学娟,李晶莹,等.纳米技术在肿瘤诊断与治疗中的应用[J].慢性病学杂志,2017,(06):645-648.
点击复制

纳米技术在肿瘤诊断与治疗中的应用(PDF)

《慢性病学杂志》[ISSN:1674-8166/CN:11-5900/R]

卷:
期数:
2017年06期
页码:
645-648
栏目:
综述
出版日期:
2017-07-13

文章信息/Info

Title:
-
作者:
汪湄党学娟李晶莹梁永娟王秀月陈彻
甘肃中医药大学,兰州730000
Author(s):
-
关键词:
纳米技术肿瘤诊断肿瘤治疗
Keywords:
-
分类号:
R73
DOI:
-
摘要:
随着纳米技术在医学领域中的深入研究,临床诊断技术及治疗水平也得以提高。本文就纳米技术、纳米技 术在肿瘤治疗中的应用、用于肿瘤治疗的纳米粒子作一简要阐述,并提出相关建议和期望。
Abstract:
-

参考文献/References:

[1] Wang C, Ye M, Cheng L, et al. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon- nanowire- array integrated with magnetic upconversion nanoprobes [J]. Biomaterials, 2015(54):55-62.
[2] Chen ZY,Wang YX, Yan Lin, et al. Advance of molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy [J]. Biomed Res Int, 2014:819324.
[3] Meneksedag- Erol D, Tang T, Uluda? H, et al. Probing the Effect of miRNA on siRNA- PEI Polyplexes [J]. J Phys Chem B, 2015,119(17):5475-5486.
[4] Morilla MJ, Romero EL. Nanomedicines against Chagas disease: an update on therapeutics, prophylaxis and diagnosis [J]. Nanomedicine (Lond) , 2015,10(3):465-481.
[5] Wang XH, Peng HS, Yang L, et al. Targetable phosphorescent oxygen nanosensors for the assessment of tumormitochondrial dysfunction by monitoring the respiratory activity [J]. Angew Chem Int Ed Engl, 2014,53(46):12471- 12475.
[6] Yao X, Xie C, Chen W, et al. Platinum- Incorporating Poly (N-vinylpyrrolidone) -poly (aspartic acid) Pseudoblock Copolymer Nanoparticles for Drug Delivery [J]. Biomacromolecules, 2015,16(7):2059-2071.
[7] Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane- coated nanoparticles [J]. Nano Lett, 2015,15(2):1403-1409.
[8] Huang Y, Zhao Y, Liu F, et al. Nano Traditional Chinese Medicine: Current Progresses and Future Challenges [J]. Curr Drug Targets, 2015,16(13):1548-1562.
[9] Assa F, Jafarizadeh - Malmiri H, Ajamein H, et al. Chitosan magnetic nanoparticles for drug delivery systems [J]. Crit Rev Biotechnol, 2016,37(4):492-509.
[10] Beik J, Abed Z, Ghoreishi FS, et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications [J]. J Control Release, 2016 (235):205-221.
[11] 惠旭辉,高立达,何能前.聚甲基丙烯酸甲醋磁性微球血管内栓塞 实验研究[J].四川医学,2001,22(10):928-929.
[12] Zhang P, Kong JL. Doxorubicin - tethered fluorescent silica nanoparticles for pH- responsive anticancer drug delivery [J]. Talanta, 2015(134):501-507.
[13] Abouelmagd SA, Ku YJ, Yeo Y, et al. Low molecular weight chitosan- coated polymeric nanoparticles for sustained and pH- sensitive delivery of paclitaxel [J]. J Drug Target, 2015,23(7/8):725-735.
[14] Guo H, Lai QY, Wang W, et al. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy [J]. Int J Pharm, 2013,451(1/2):1-11.
[15] Sun Q, Kang Z, Xue L, et al. A Collaborative assembly strategy for tumor- targeted siRNA delivery [J]. J Am Chem Soc, 2015,137(18):6000-6010.
[16] Rugo HS, Barry WT, Moreno-Aspitia A, et al. Randomized phase Ⅲ trial of paclitaxel once per week compared with nanoparticle albumin- bound nab- paclitaxel once per week or ixabepilone with bevacizumab as first- line chemotherapy for locally recurrent or metastatic breast cancer: CALGB 40502/NCCTG N063H (Alliance) [J]. J Clin Oncol, 2015,33(21):2361-2369 .
[17] 中国化学会高分子学科委员会.载药酪蛋白纳米粒子的交联及体 内毒副作用评估:全国高分子学术论文报告会[R].上海:中国化学 会高分子学科委员会,2013.
[18] Ding Y, Wang Y, Opoku- Damoah Y, et al. Dual- functional bio - derived nanoparticulates for apoptotic antitumor therapy [J]. Biomaterials, 2015(72):90-103.
[19] Simonsen JB. Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform - a detailed survey of rHDL particles ranging from biophysical properties to clinical implications [J]. Nanomedicine, 2016,12(7): 2161-2179.
[20] Zhang ZH, Lv HX, Wang XP, et al. Studies on lactoferrin nanoparticles of gambogic acid for oral delivery [J]. Drug Deliv, 2013,20(2):86-93.
[21] Kwak S, Haider A, Gupta KC, et al. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering [J]. Nanoscale Res Lett, 2016,11(1):323.
[22] Cho H, Gao J, Kwon GS, et al. PEG- b- PLA micelles and PLGA- b- PEG- b- PLGA sol- gels for drug delivery [J]. J Control Release, 2016(240):191-201.
[23] Sajid MI, Jamshaid U, Jamshaid T, et al. Carbon nanotubes from synthesis to in vivo biomedical applications [J]. Int J Pharm, 2016,501(1-2):278-299.
[24] Chen H, Wang Z, Zong S, et al. SERS- fluorescence monitored drug release of a redox- responsive nanocarrier based on graphene oxide in tumor cells [J]. ACS Appl Mater Interfaces, 2014,6(20):17526-17533.
[25] Favi PM, Gao M, Johana Sepúlveda Arango L, et al. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus goldnanostars [J]. J Biomed Mater Res A, 2015,103(11):3449-3462.
[26] Wang Y, Zhao R, Wang S, et al. In vivo dual- targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier [J]. Biomaterials, 2016(75):71-81.
[27] Deng QJ, Liu YG, Wang SB, et al. Construction of a novel magnetic targeting anti- tumor drug delivery system: cytosine arabinoside-loaded bacterial magnetosome [J]. Materials, 2013(6):3755-3763.
[28] Espanani HR, Faghfoori Z, Izadpanah M, et al. Toxic effect of nano- zinc oxide [J]. Bratisl Lek Listy, 2015,116 (10):616-620.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81460456) 作者简介:汪湄,在读硕士,研究方向:肿瘤分子生物学 通信作者:陈彻,E-mail: chen72123@163.com
更新日期/Last Update: 2017-07-18